Żywe materiały

Zespół badawczy nr 2

Żywe materiały

Kierownik zespołu

dr hab. Jan Paczesny, prof. instytutu

Tematyka badawcza

Główną ideą, która jest klamrą spinającą działania grupy, jest stworzenie połączenia między biologią i chemią materiałową. Połączenie takie można zrealizować na co najmniej dwa sposoby: 1) poprzez wykorzystanie zdobyczy ewolucji (biomolekuł, wirusów, całych organizmów) do przygotowania funkcjonalnych materiałów lub 2) zastosowanie wiedzy z zakresu chemii fizycznej, materiałowej oraz nanotechnologii do tworzenia nowoczesnych nanomateriałów, które można wykorzystać w biologii i medycynie. 

Członkowie

  • dr inż. Konrad Giżyński
  • mgr Mateusz Wdowiak
  • mgr inż. Rafał Zbonikowski
  • Enkhlin Ochirbat
  • dr inż. Witold Adamkiewicz
  • dr Prabhjot Singh
  • dr Hossein Maleki Ghaleh
  • mgr Bartosz Kamiński
  • mgr inż. Enkhlin Ochirbat
  • mgr Gunjan Tiwari
  • mgr Mateusz Wdowiak
  • mgr inż. Rafał Zbonikowski

Badania

Combining precise measurements (physical chemistry) and applying them to biochemistry and molecular biology problems might result in a major improvement of understanding of important scientific issues, which are not available for only chemists, only physicist nor only biologists. The variety and functionality of biological materials is almost impossible to be mimicked in artificial systems. Therefore, utilization of sensitivity and diversity of biomolecules and primitive organisms might result in spectacular properties of novel bio-materials. Moreover, biomolecules are usually monodisperse, even despite high molecular mass. Therefore, equations and laws established for pure systems are applicable also for bio-systems. One of the aims of the research is to learn how to take the best parts from biology, biochemistry, physical chemistry and nanotechnology and combine them together. This might be done by incorporation of biocomponents into nanotechnology or by utilization of nanotechnology and materials chemistry in the services of biology and medicine. We aim to combine both approaches and build a true “bridge” – a two way connection between the fields.

Publikacje

2021

Wdowiak, M., Ochirbat, E., & Paczesny, J.
Gold—Polyoxoborates Nanocomposite Prohibits Adsorption of Bacteriophages on Inner Surfaces of Polypropylene Labware and Protects Samples from Bacterial and Yeast Infections.
Viruses, https://doi.org/10.3390/V13071206

Paczesny, J.
The use of probes and bacteriophages for bacteria detection.
In V. Gurtler (Ed.), Fluorescent Probes (1st ed.). Academic Press. https://www.elsevier.com/books/fluorescent-probes/gurtler/978-0-12-823515-7

Richter, Ł., Księżarczyk, K., Paszkowska, K., Janczuk-Richter, M., Niedziółka-Jönsson, J., Gapiński, J., Łoś, M., Hołyst, R., & Paczesny, J.
Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research.
Scientific Reports, https://doi.org/10.1038/s41598-021-86571-x

Paczesny, J., Wolska-Pietkiewicz, M., Binkiewicz, I., & Janczuk-Richter, M.
Langmuir and Langmuir Blodgett films of zinc oxide (ZnO) nanocrystals coated with polyhedral oligomeric silsesquioxanes (POSS).
Journal of Colloid and Interface Science, https://doi.org/10.1016/j.jcis.2021.05.085

Kuczynska, K., Bończak, B., Rárová, L., Kvasnicová, M., Strnad, M., Pakulski, Z., Cmoch, P., & Fiałkowski, M.
Synthesis and cytotoxic activity of 1,2,3-triazoles derived from 2,3-seco-dihydrobetulin via a click chemistry approach.
Journal of Molecular Structure,  https://doi.org/10.1016/J.MOLSTRUC.2021.131751

Richter, Ł., Paszkowska, K., Cendrowska, U., Olgiati, F., Silva, P., Gasbarri, M., Guven, P., Paczesny, J., & Stellacci, F.
Broad-spectrum nanoparticles against bacteriophage infections.
Nanoscale, https://doi.org/10.1039/D1NR04936D

Gizynski, K., Makuch, K., Paczesny, J., Zhang, Y., Maciołek, A., & Holyst, R.
Internal energy in compressible Poiseuille flow.
Physical Review E,  https://doi.org/10.1103/PhysRevE.104.055107

2022

Auksorius, E., Borycki, D., Wegrzyn, P., Žičkienė, I., Adomavičius, K., Sikorski, B. L., & Wojtkowski, M.
Multimode fiber as a tool to reduce cross talk in Fourier-domain full-field optical coherence tomography.
Optics Letters, https://doi.org/10.1364/OL.449498

Bończak, B. B., & Fiałkowski, M.
Donor–Acceptor Stenhouse Adducts for Stimuli-Responsive Self-Assembly of Gold Nanoparticles into Semiconducting Thin Films.
The Journal of Physical Chemistry C,  https://doi.org/10.1021/ACS.JPCC.2C00084

Paczesny, J., Wdowiak, M., & Ochirbat, E.
Bacteriophage-Based Biosensors: Detection of Bacteria and Beyond.
Nanotechnology for Infectious Diseases,  https://doi.org/10.1007/978-981-16-9190-4_20

Szuwarzyński, M., Mazur, Ł., Borkowski, M., Maćkosz, K., Giżyński, K., & Mazur, T.
Enhanced Assembly of Ag Nanoparticles for Surface-Independent Fabrication of Conductive Patterns.
ACS Applied Nano Materials, https://doi.org/10.1021/ACSANM.2C02559

Rozynek, Z., Harkavyi, Y., & Giżyński, K.
Fabrication of 1D particle structures outside a liquid environment using electric and capillary interactions: From fundamentals to applications.
Materials & Design,  https://doi.org/10.1016/J.MATDES.2022.111233

Dlamini, M. C., Dlamini, M. L., Mente, P., Tlhaole, B., Erasmus, R., Maubane-Nkadimeng, M. S., & Moma, J. A.
Photocatalytic abatement of phenol on amorphous TiO2-BiOBr-bentonite heterostructures under visible light irradiation.
Journal of Industrial and Engineering Chemistry, https://doi.org/https://doi.org/10.1016/j.jiec.2022.04.023

Stasiewicz, K. A., Jakubowska, I., Moś, J. E., Marć, P., Paczesny, J., Zbonikowski, R., & Jaroszewicz, L. R.
Optical Properties of a Tapered Optical Fiber Coated with Alkanes Doped with Fe3O4 Nanoparticles.
Sensors, https://doi.org/10.3390/s22207801

Atamas, N. O., Yablochkova, K. S., Lazarenko, M. M., & Taranyik, G.
Relaxation, temporal diffusion, and polarity of aromatic hydrocarbons in ionic liquid.
Applied Nanoscience, https://doi.org/10.1007/S13204-022-02696-Z

Łyczek, J., Bończak, B., Krzymińska, I., Giżyński, K., & Paczesny, J.
Gold–oxoborate nanocomposite-coated orthodontic brackets gain antibacterial properties while remaining safe for eukaryotic cells.
Journal of Biomedical Materials Research Part B: Applied Biomaterials, https://doi.org/10.1002/JBM.B.35208

2023

Wdowiak, M., Mierzejewski, P. A., Zbonikowski, R., Bończak, B.; Paczesny, J.
Congo red protects bacteriophages against UV irradiation and allows for the simultaneous use of phages and UV for membrane sterilization.
Environmental Science: Water Research ; Technology, https://doi.org/10.1039/D2EW00913G

Raza, S., Wdowiak, M., ; Paczesny, J.
An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages.
EcoSal Plus, https://doi.org/10.1128/ECOSALPLUS.ESP-0019-2022

Goula, M., Charisiou, N. D., Polychronopoulou, K., O’connor, R., Matsoso, J. B., Mashindi, V., Mente, P., Macheli, L., Moreno, B. D., Doyle, B. P., Coville, N. J., ; Barrett, D. H.
Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres.
Nanomaterials, https://doi.org/10.3390/NANO13030426

Ochirbat, E., Zbonikowski, R., Sulicka, A., Bończak, B., Bonarowska, M., Łoś, M., Malinowska, E., Hołyst, R.; Paczesny, J.
Heteroaggregation of virions and microplastics reduces the number of active bacteriophages in aqueous environments.
Journal of Environmental Quality; https://doi.org/10.1002/JEQ2.20459

Finansowanie

National Science Centre, grant

SONATA 15 UMO-2019/35/D/ST5/03613 (kierownik dr K. Giżyński) 2020 - 2023

OPUS 18 UMO-2019/35/B/ST5/03229 (kierownik dr J. Paczesny) 2020 - 2023

SONATA BIS UMO-2017/26/E/ST4/00041 (kierownik dr J. Paczesny) 2018 - 2022