Cooperative catalysis

Research group no. 20

Cooperative catalysis

Group leader

dr hab. Adam Kubas

Research topics

In the CoopCat group we aim to provide theoretical tools and concepts to be used in the growing field of cooperative catalysis that due to its borderline character require a unique holistic approach. We explore the synergy between theory and experiment: the use of high-level quantum chemical methods enables us to provide quantitative data of controllable accuracy that allow for an in silco design of efficient catalysts. Theoretical feedback is used our own experimental laboratory that is well suited to study various types of catalytic reactions, both homogeneous and heterogeneous.

Members

  • Tomasz Bednarek
  • dr inż. Magdalena Bonarowska
  • dr Alla Dyachenko
  • dr Michał Kochman
  • dr Dariusz Piekarski
  • James Pogrebetsky
  • dr hab. Jacinto Sa, prof. IChF
  • dr Aleksandra Siklitckaia 
  • dr Małgorzata Zienkiewicz-Machnik
  • dr Farhad Izadi

Research

Embedding techniques in heterogeneous and enzymatic catalysis High-level QM methods in catalysis – quantitative theoretical catalysis Theoretical spectroscopy Chemistry of retinoids – theory and experiment Catalyst characterization – from surface to electronic structure of active centres X-ray spectroscopy (XAS, XES).

Publications

2021

Kubas, A.
How the Donor/Acceptor Spin States Affect the Electronic Couplings in Molecular Charge-Transfer Processes?
Journal of Chemical Theory and Computation, https://doi.org/10.1021/acs.jctc.1c00126

Siklitskaya, A., Gacka, E., Larowska, D., Mazurkiewicz-Pawlicka, M., Malolepszy, A., Stobiński, L., Marciniak, B., Lewandowska-Andrałojć, A., & Kubas, A.
Lerf–Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins.
Scientific Reports, https://doi.org/10.1038/s41598-021-86880-1

Uygur, M., Kuhlmann, J. H., Pérez-Aguilar, M. del C., Piekarski, D. G., & García Mancheño, O.
Metal- and Additive-free C-H Oxygenation of Alkylarenes by Visible-light Photoredox Catalysis.
Green Chemistry, https://doi.org/10.1039/D1GC00463H

Blum, E., Zhang, J., Zaluski, J., Einstein, D. E., Korshin, E. E., Kubas, A., Gruzman, A., Tochtrop, G. P., Kiser, P. D., & Palczewski, K.
Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy.
Journal of Medicinal Chemistry, https://doi.org/10.1021/acs.jmedchem.1c00279

Pagacz-Kostrzewa, M., Kochman, M. A., Gul, W., & Wierzejewska, M.
Phototransformations of 2-aminonicotinic acid resolved with matrix isolation infrared spectroscopy and ab initio calculations.
Journal of Photochemistry and Photobiology A: Chemistry, https://doi.org/10.1016/j.jphotochem.2021.113187

Masternak, J., Zienkiewicz-Machnik, M., Łakomska, I., Hodorowicz, M., Kazimierczuk, K., Nosek, M., Majkowska-Młynarczyk, A., Wietrzyk, J., & Barszcz, B.
Synthesis and Structure of Novel Copper(II) Complexes with N,O- or N,N-Donors as Radical Scavengers and a Functional Model of the Active Sites in Metalloenzymes.
International Journal of Molecular Sciences, https://doi.org/10.3390/IJMS22147286

Kochman, M. A., Palczewski, K., & Kubas, A.
Theoretical Study of the Photoisomerization Mechanism of All-Trans-Retinyl Acetate.
The Journal of Physical Chemistry A,  https://doi.org/10.1021/ACS.JPCA.1C05533

Kochman, M. A., Durbeej, B., & Kubas, A.
Simulation and Analysis of the Transient Absorption Spectrum of 4-(N,N-Dimethylamino)benzonitrile (DMABN) in Acetonitrile.
The Journal of Physical Chemistry A,  https://doi.org/10.1021/ACS.JPCA.1C06166

Grądzka, E., Rizzi, G. A., Bonarowska, M., & Dłużewski, P. 
Capacitance Properties of Chemically Prepared Carbon Nanostructure/Polyazulene Composites.
ECS Journal of Solid State Science and Technology, https://doi.org/10.1149/2162-8777/AC26D7

Rousseau, P., González-Vázquez, J., Piekarski, D. G., Kopyra, J., Domaracka, A., Alcamí, M., Adoui, L., Huber, B. A., Díaz-Tendero, S., & Martín, F.
Timing of charge migration in betaine by impact of fast atomic ions.
Science Advances, https://doi.org/10.1126/SCIADV.ABG9080

Ratajczyk, T., Mames, A., Pietrzak, M., Bernatowicz, P., Kubas, A., & Luboradzki, R. NMR Crystallography Enhanced by Quantum Chemical Calculations and Liquid State NMR for the Investigation of Se NHC Adducts. Chemistry – A European Journal, https://doi.org/10.1002/CHEM.202102800

Ziogos, O. G., Kubas, A., Futera, Z., Xie, W., Elstner, M., & Blumberger, J.
HAB79: A New Molecular Dataset for Benchmarking DFT and DFTB Electronic Couplings Against High-Level Ab-initio Calculations.
The Journal of Chemical Physics, https://doi.org/10.1063/5.0076010

2022

Jesús Fernández-Ropero, A., Zawadzki, B., Matus, K., Patkowski, W., Krawczyk, M., Lisovytskiy, D., Raróg-Pilecka, W., & Śrębowata, A.
Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-pentenal.
Catalysts, https://doi.org/10.3390/CATAL12010019

Grądzka, E., Breczko, J., Bonarowska, M., Wysocka-Żołopa, M., Basa, A., & Winkler, K.
Oxidized Multiwalled Carbon Nanotubes as Components and Oxidant Agents in the Formation of Multiwalled Carbon Nanotube/Polyazulene Composites.
Journal of The Electrochemical Society,  https://doi.org/10.1149/1945-7111/AC5347

Lohmann, N., Milovanović, V., Piekarski, D. G., & Mancheño, O. G.
Metal-free Oxoammonium Salt-Mediated C(sp3)-H Oxidative Ugi-Azide Multicomponent Reaction.
Organic & Biomolecular Chemistry, https://doi.org/10.1039/D2OB00101B

Wagner, J., Crocomo, P. Z., Kochman, M. A., Kubas, A., Data, P., & Lindner, M.
Modular, n-Doped Concave PAHs for High-Performance OLEDs with Tunable Emission Mechanisms.
Angewandte Chemie International Edition,  https://doi.org/10.1002/ANIE.202202232

Korona, K., Terlecki, M., Justyniak, I., Magott, M., Żukrowski, J., Kornowicz, A., Pinkowicz, D., Kubas, A., & Lewinski, J.
A new look at molecular and electronic structure of homoleptic diiron(II,II) complexes with N,N-bidentate ligands: Combined experimental and theoretical study.
Chemistry – A European Journal, https://doi.org/10.1002/CHEM.202200620

Bartkowski, K., Crocomo, P. Z., Kochman, M., Kumar, D., Kubas, A., Data, P., Lindner, M.,

Tandem rigidification and π-extension as a key tool for the development of a narrow linewidth yellow hyperfluorescent OLED system.

Chemical Science, https://doi.org/10.1039/D2SC03342A

Kochman, M., Gryber, T. G., Durbeej, B., & Kubas, A.

Simulation and Analysis of the Relaxation Dynamics of a Photochromic Furylfulgide.

Physical Chemistry Chemical Physics, https://doi.org/10.1039/D2CP02143A

Dyachenko, A., Ischenko, O., Diyuk, V., Goncharuk, O., Borysenko, M., Mischanchuk, O., Zakharova, T., Pryhunova, O., Sternik, D., & Lisnyak, V.

The catalytic efficiency of Fe-containing nanocomposites based on highly dispersed silica in the reaction of CO2 hydrogenation.

Research on Chemical Intermediates, https://doi.org/10.1007/s11164-022-04720-x

Lewandowska-Andralojc, A., Gacka, E., Pedzinski, T., Burdzinski, G., Lindner, A., O’Brien, J. M., Senge, M. O., Siklitskaya, A., Kubas, A., Marciniak, B., & Walkowiak-Kulikowska, J.
Understanding structure–properties relationships of porphyrin linked to graphene oxide through π–π-stacking or covalent amide bonds.
Scientific Reports, https://doi.org/10.1038/s41598-022-16931-8

Dyachenko, A. G., Ischenko, O. V., Borysenko, M. V., Gaidai, S. V., Yatsymyrskyi, A. V., Tsapyuk, G. G., Pryhunova, O. V., & Kostyrko, O. O.
Co-Fe/Al2O3 Nanocomposite Catalysts of the Process of CO2 Hydrogenation.
Theoretical and Experimental Chemistry,  https://doi.org/10.1007/S11237-022-09731-8

Lalaoui, N., Abdellah, M., Materna, K. L., Xu, B., Tian, H., Thapper, A., Sa, J., Hammarström, L., & Ott, S. 
Gold nanoparticle-based supramolecular approach for dye-sensitized H2-evolving photocathodes.
Dalton Transactions, https://doi.org/10.1039/D2DT02798D

Hong, J. D., Salom, D., Kochman, M. A., Kubas, A., Kiser, P. D., & Palczewski, K.
Chromophore hydrolysis and release from photoactivated rhodopsin in native membranes.
Proceedings of the National Academy of Sciences,  https://doi.org/10.1073/PNAS.2213911119
Vision starts when a photon isomerizes the 11-cis-retinylidene chromophore of rhodopsin to initiate phototransduction. The all-trans-retinylidene product is hydrolyzed and all-trans-retinal released, allowing rebinding of 11-cis-retinal to regenerate rhodopsin for sustained vision. In this paper, we studied, both experimentally and theoretically, the kinetics and thermodynamics of the fundamental process of chromophore hydrolysis.

Cimoch, I., Grądzka, E., Bonarowska, M., Dłużewski, P., Rizzi, G. A., Kozłowski, M., & Winkler, K.
Formation and electrochemical properties of ternary mesoporous carbon, coordination C60Pd polymer and palladium nanoparticle composites.
Electrochimica Acta, https://doi.org/10.1016/J.ELECTACTA.2022.141741

Bericat-Vadell, R., Zou, X., Drillet, M., Corvoysier, H., Silveira, V. R., Konezny, S. J., & Sá, J.
Carrier Dynamics in Solution-Processed CuI as a P-Type Semiconductor: The Origin of Negative Photoconductivity.
The Journal of Physical Chemistry Letters, https://doi.org/10.1021/ACS.JPCLETT.2C03720

Zou, X., Vadell, R. B., Liu, Y., Mendalz, A., Drillet, M., & Sá, J.
Photophysical Study of Electron and Hole Trapping in TiO2and TiO2/Au Nanoparticles through a Selective Electron Injection.
Journal of Physical Chemistry C, https://doi.org/10.1021/ACS.JPCC.2C07021

2023

Mallamace, F., Clarizia, L., Vitiello, G., Bericat Vadell, R., Sá, J., Marotta, R., Somma, I. Di, Andreozzi, R., & Luciani, G.
Effect of Synthesis Method on Reaction Mechanism for Hydrogen Evolution over CuxOy/TiO2 Photocatalysts: A Kinetic Analysis.
International Journal of Molecular Sciences, https://doi.org/10.3390/IJMS24032004

Derkowski, W., Kumar, D., Gryber, T., Wagner, J., Morawiak, M., Kochman, M. A., Kubas, A., Data, P., & Lindner, M.
V-shaped donor–acceptor organic emitters. A new approach towards efficient TADF OLED devices.
Chemical Communications, https://doi.org/10.1039/D2CC06978D

Verma, R., Belgamwar, R., Chatterjee, P., Bericat-Vadell, R., Sa, J., & Polshettiwar, V.
Nickel-Laden Dendritic Plasmonic Colloidosomes of Black Gold: Forced Plasmon Mediated Photocatalytic CO2 Hydrogenation.
ACS Nano, https://doi.org/10.1021/ACSNANO.2C10470

Pryhunova, O., Dyachenko, A., Ischenko, O., Diuyk, V., Goncharuk, O., Olena Oranska, ·, & Bonarowska, M.
NiFe(CoFe)/silica and NiFe(CoFe)/alumina nanocomposites for the catalytic hydrogenation of CO2.
Applied Nanoscience, https://doi.org/10.1007/S13204-023-02781-X

Sarang, K., Otto, T., Gagan, S., Rudzinski, K., Schaefer, T., Brüggemann, M., Grgić, I., Kubas, A., Herrmann, H., & Szmigielski, R.
Aqueous-phase photo-oxidation of selected green leaf volatiles initiated by OH radicals: Products and atmospheric implications.
Science of The Total Environment,  https://doi.org/10.1016/J.SCITOTENV.2023.162622

Silveira, V. R., Bericat-Vadell, R., & Sá, J.
Photoelectrocatalytic Conversion of Nitrates to Ammonia with Plasmon Hot Electrons.
The Journal of Physical Chemistry C, https://doi.org/10.1021/ACS.JPCC.3C00772

Ochirbat, E., Zbonikowski, R., Sulicka, A., Bończak, B., Bonarowska, M., Łoś, M., Malinowska, E., Hołyst, R., & Paczesny, J.
Heteroaggregation of virions and microplastics reduces the number of active bacteriophages in aqueous environments.
Journal of Environmental Quality,  https://doi.org/10.1002/JEQ2.20459

Cooperation

Outside of IPC PAS:

  • Prof. Jochen Blumberger, University College London (UCL), Department of Physics and Astronomy, London, United Kingdom
  • Prof. Stefan Bräse, Karlsruhe Institute of Technology (KIT), Institute of organic Chemistry and Institute of Toxicology and Genetics, Karlsruhe, Germany Priv.-Doz.
  • Dr Karin Fink, Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Karlsruhe, Germany
  • Prof. Leticia González, University of Vienna, Institut für Theoretische Chemie, Vienna, Austria
  • Dr Anna Lewandowska-Adrałojć, Adam Mickiewicz University (AMU), Chemistry Dept., Poznań, Poland
  • Prof. Krzysztof Palczewski, University of California, Irvine (UCI), Irvine, USA
  • Dr József Pap, Hungarian Academy of Sciences Centre of Energy Research, Budapest, Hungary

Financing

2019 – 2023

National Science Centre of Poland, Sonata Bis 8 Project No. UMO- 2018/30/E/ST4/00004 CoopCat: developing theoretical tools and concepts to understand cooperative effects in catalysis. PI: Adam Kubas (PLN 1 454 260, ca. EUR 342 000) 

2016 – 2019

Ministry of Science and Higher Education of Poland, Fellowship for young and outstanding researchers for Adam Kubas, project number 093/STYP/11/2016 (PLN 194 000, ca. EUR 45 600) 

2016 – 2018

National Science Centre of Poland, Sonata Project No. UMO- 2015/17/D/ST4/00112 Iron-sulfur clusters as natural switches: consequences of the unique iron atom coordination at a molecular level. PI: Adam Kubas (PLN 272 380, ca. EUR 64 000)